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* Also known as Bell’s palsy, which is the most common type
of facial paralysis, affecting 1/5,000 people a year.

* Temporary loss of muscle control in one side of the face,
causing asymmetric facial deformation.

* Causes are not completely known, but herpes or syphilis

cou
* Peo

d be responsible.

ole with diabetes and HIV are at higher risk of

developing facial palsy.
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* Automatic detection/diagnosis is emerging recently;

however, all use handcrafted features.

* Previous approaches were evaluated on proprietary

databases, making performance comparison difficult.
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* First deep-learning approach for facial palsy detection,

able to identify affected regions in a still image and the

frequency of the syndrome in a video.

* Release of the first public database, labeled by clinicians,

for facial palsy study.
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* The LO-MCGFs [2] use uniform  image 1. Frace Local region
database __ detection ﬁ> construction
pass-bands to enhance the T
desired spatial frequencies, Sssification eature |
p q C(IMC-i;Vhtfls) < e:tratction LO-MCGF

and bounded filter support to
specify the region of interest.

* The proprietary database provided by Osaka Police Hospital has
85 subjects (75 patients + 10 healthy volunteers).

[2] Ngo, Truc Hung, et al. "Quantitative analysis of facial paralysis based on limited-orientation modified
circular Gabor filters." ICPR 2016. 6/19
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Given the facial landmarks, compute the asymmetric score using
the landmark displacements at eye and mouth regions while the
subjects change expression.

[3] Kim, Hyun Seok, et al. "A smartphone-based automatic diagnosis system for facial nerve palsy." Sensors 2015.
7/19
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* FaceNet
* YOLO-9000, retrained on WiderFace, yielding 99.25% AP on AFW.

e LandmarkNet

* H.G. Face Alignment w9 ' =t
- ' ° ; B sEEr==an]

Network (ICCV 17) for Y AT EaiesE
locating facial landmarks. w W -y R ek

* PalsyNet
* Landmark-defined grid of 8x8 cells covering all possible palsy regions.
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e Built on YOLO-9000 and retrained on the WiderFace database
(393,703 labeled faces)

* AP 99.25% on AFW benchmark, better than DPM (97.2%),
HeadHunter (97.1%), SSD-512 (98.6%) and Faster RCNN (95.3%).
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e LandmarkNet :

* Face Alignment Network (FAN) built on Hour-Glass with
oottleneck block replaced by residual block.

* Hour-Glass consists of multi stacked hourglass modules
allowing for repeated bottom-up, top-down inference.

l BN, Binary
[3x3, 256 ->128]
BN, Binary
13x3, 128 ->64|
BN, Binary
| 3x3, 64 ->64 |

D Heatmaps
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* Fewer layers: 11 convolution layers and 4 max-pooling layers
(v.s. 19 convolution layers and 5 max-pooling in Darknet-19).

* Tailor-made anchor boxes for fast locating of palsy regions.
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e 32 videos of 21 patients from YouTube;

* As the shortest facial palsy session lasts for a second, we
convert each video into an image sequence with 6FPS;

* Manually labeled local palsy regions when the deformation
intensity was considered sufficiently high by clinicians.
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123 subjects, 593 image sequences with 7 expressions

.

O-Neutral

4-Fear 5-Happiness 6-Sadness 7-Surprise 15/19
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e 21 leave-one-out on FPD and 5-fold cross validation on CK+

* Performance with and without CK+ expression dataset.
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Frequency of Occurrence

* Detection of palsy-caused deformation over time when patients were talking.

Number

Sub-1
I

;
!

H
&2

it & = e 3% =
MLl 8 oRrams

0 50 150 200 250 300

200 250

0 50 100 150

Time(Sec)

18/19



CVPR Conclusion

SALT LAKE CITY ¢ JUNE 18-22

* |dentification of facial palsy
formulated as detection of local
regions, we propose a top-down
hierarchical framework as a
solution.

* A practical case study for the
application/modification of deep
learning framework for auto
detection/diagnosis of (facial)
medical disorders.
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